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1 Goals

The goal of this report is to analyze the in-plane
shear transfer of the Lincoln Block R© System as
is currently recommended. We supplement the
July 30th 2019 Nickerson Engineering preliminary
structural calculations for the 33 × 25 cabin by
considering the effects of the polyurethane foam,
glue, and silicone selant. These additional factors
set the members’ axes of rotation and determine
the distribution of the wall’s internal forces. Once
a shear modulus for pure block is acquired, we use
energy arguments to approximate the additional
strength added by the required corner pieces and
splines for any given Lincoln Block R© shear wall.
In section 3.5 we apply these equations to the
specifics of the 33× 25 cabin.

These results are preliminary and we seek
stakeholders and interested parties to help pro-
vide experimental validation of the model’s com-
ponents. Values in this paper reflect the physics
alone; ASD or LFRD adjustments given design fac-
tors appropriate to project specifics are advised.

2 Mid-wall Shear Transfer

2.1 Parameters

Shear transfer between courses of Lincoln Block R©

is enabled by regularly spaced members in the cav-
ity and a pair of tongue and grooves on the sides
filled with an elastometric sealant. The members
are secured to their home course by four nails and
two patches of elastometric adhesive weeks be-
fore construction. At the build site, courses are
stacked such that these members fit snugly into
the course above and are subsequently nailed in
place. The resulting cavity is then filled with spray
polyurethane foam (SPF).

The reaction forces and torques of these mem-
bers depend on the relative course drift ∆x, and
both the members’ axis height h and rotation angle
∆θ (described in figure 1). Heights in this section

are assumed to be measured in inches above the
bottom of the course under consideration.

After analyzing block-to-block shear connec-
tions, we develop a model for shear transfer that
includes the corner pieces and splines which facili-
tate point loads and tie each course, in a one-story
Lincoln Block R© structure, directly to the sill plate
and foundation.

Figure 1: Side view of course-to-course connection
showing the coordinate system chosen to describe
the rotation/translation of the members.

2.2 Yield Conditions

The proposed mode of shear failure for Lincoln
Block R© is via excessive bending of the brad nails
that secure the sides to the members. Such nails,
when forced opposite their bend, lever and aid
in the over-extension of the elastometric adhesive,
which may lead to the eventual disunion of the
sides and members. The design of the Lincoln
Block R© system aims to prevent this eventuality
with adhesive SPF in the cavity and rugged spline
pieces nailed inside the walls at critical junctures.

1



2.3 Components

2.3.1 Industrial Sealant

Standard Lincoln Block R© features a tapered
tongue and a concentric groove. This allows
for the encasement of a 1.01 in wide, 0.06 in
thick bead of opaque DAP Dynaflex 230 sealant.
Joint movement and elongation at break are
listed by the manufacturer as 25% and 300%
respectively[5]. Thus under a horizontal drift of
0.06
√

1.252 − 1 in = 0.045 in the bead is stretched
to 125% of its initial length while the sealant’s
maximum drift, 0.06

√
42 − 1 in = 0.23 in, is far

more than the course drift required for the first
nail to yield.

The force required to cause a specific drift is
determined by the shear modulus of the sealant it-
self however this information is not available pub-
licly. As stress-strain curves are typically concave
down, we underestimate the elastic modulus of the
sealant as the secant modulus at maximum strain
and ultimate strength.

Dynaflex 230 has an ultimate tensile strength
of 200 psi at 300% elongation hence we estimate
the elastic modulus as Es = 66.7 psi. Given a
Poisson ratio of νs = 0.4 we approximate the shear
modulus of this isotropic sealant Gs as

Gs =
Es

2(1 + νs)
= 23.8 psi

Thus we assume one 24 in bead acts with a restor-
ing force

Fs/∆x =
23.8 psi · (1.01 · 24 in2)

0.06 in
= 9615 lbf/in

near equilibrium.

2.3.2 Members and Nails

The members of the Lincoln Block R© system are
designed to be 3.125 in wide and 7.625 in high,
and are regularly spaced 24 in o.c. Members are
nailed to their home course at 1 in and 3.75 in
by two pairs of Grip Rite 0.072 in × 2 in stain-
less steel brad nails and glued with two patches of
Sikaflex 1A adhesive. When constructed, another
pair identical nails at 5.75 in secures the block,
1 in into the adjacent course.

Observing in-house experiments, nail heads
do not typically pull through before the shanks
pull out of the member, and only after signifi-
cant bending and yielding of the wood has oc-
curred. By employing the American Wood Coun-
cil’s equations[1], we determine the yield mode for
these nails given the following parameters:

• Specific gravity of Douglas fir G = 0.46

• Nail diameter of D = 0.072 in

• Dowel bearing resistance q = 16, 600DG1.84

• Nail yield bearing of
Fyb = 169, 000− 278, 000D

• Nail bending moment of Md =
FybD
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• Side-member gap, g ≈ 1/64 in

• Nail embedment depths

1. Ls = 1.125 in

2. Lm = 0.859 in = 2 in− Ls − g.

Here Ls and Lm are nail lengths in the side and
member respectively as the nail gun typically over-
drives nails 1/4 in beyond flush. Via the General
Dowel Equations for Solid Cross Section Members,
we find that bending in which two plastic hinges
form (mode IV) is the preferred mode of nail yield-
ing.

Mode Yield Force (lb)

Im 246.1
Is 322.2
II 83.11
IIIm 90.96
IIIs 113.97
IV 70.78

To determine the restoring shear of individual
nails one can calculate the slip modulus of a sin-
gle such connection analytically. However, section
7.1 of Eurocode 5[6] claims the following empiri-
cal two-parameter power law model is sufficient for
non-pre-drilled timber-to-timber connections:

k = ρ1.5d0.8/30 (1)

where ρ is the density of our timber in kg/m3, and
d the dowel diameter in mm. Using 1000kg/m3

times the specific gravity of Douglas fir and con-
verting our dowel diameter into appropriate units,
we have

k = 533.0 N/mm = 36520 lbf/in.

Using our choice of coordinates (in figure 1)
and given a course drift of ∆x, the force applied
by each nail on the member is given by,

Fn1(∆x, h) = −k∆θ(∆x, h) · (n1 − h)

Fn2(∆x, h) = −k∆θ(∆x, h) · (n2 − h)

Fn3(∆x, h) = −k [∆θ(∆x, h) · (n3 − h)−∆x]

where n1, n2, and n3 are the nail positions 1, 3.75,
and 5.75 in while ∆θ(∆x, h) is to be determined
by equilibrium conditions.
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Figure 2: Schematic diagram of forces by nail and
adhesive on member for some h, ∆θ, and ∆x.

Later, we consider the torque by each nail
about an axis at height h,

τni(∆x, h) = Fni(∆x, h) · (ni − h)

and then use our zero net-torque condition in order
to determine the preferred axis of rotation.

2.3.3 Elastometric Adhesive

In the construction of Lincoln Block R©, an elasto-
metric adhesive (currently Sikaflex 1A) is applied
to the members before being nailed together and
left to cure. The torque and restoring force of the
adhesive is a function of the adhesive thickness,
axis of rotation, and angle of rotation.

Assuming the incomprehensibility (νA = 0.5)
of Sikaflex 1A we have a shear modulus of GA =
35/3 psi (at up to 25% extension), an axis at height
h, adhesive thickness t, and assuming complete
and uniform coverage we find the restoring torque
of the adhesive, τA, about a central axis (0.75, h)
as follows.

G =
dF/dA

r∆θ/t

dF =
G∆θ

t
rdA

dτA = −r · dF

τA = −GA∆θ

t

∫ 4.75

0

∫ 1.5

0
(x− 0.75)2 + (y − h)2dxdy

= −GA∆θ

t
0.59375

(
12(h− 2.375)2 + 24.8125

)
where r =

√
(x− 0.75)2 + (y − h)2 and the nega-

tive sign ensures τA acts opposite ∆θ.
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Figure 3: Restoring torque of Sikaflex 1A adhe-
sive given a 1.8 in high axis showing resistance is
inversely proportional to the thickness.

By symmetry, the Sikaflex adhesive supplies no
net-force in our model when h = 2.375 in. For
all other axes there exists a patch of adhesive be-
low/above the axis for which there is no patch
above/below to counter act. This force acts hori-
zontally and is given by summing up the horizontal
component of the adhesive’s restoring force,

FA =
G∆θ

t

∫ 1.5

0

∫ 4.75

0
(h− y)dydx.

Adhesive thickness is determined via measure-
ment of the sides, member, and total width of
prepared Lincoln Block R©. Total width is taken as
the average of the top and bottom widths.

Side 1 Side 2 Member Width Glue

1.401 1.395 3.141 5.9615 0.012
1.408 1.395 3.134 5.9865 0.019
1.407 1.393 3.130 5.974 0.006
1.397 1.389 3.137 5.953 0.002
1.413 1.392 3.124 5.968 0.015
1.400 1.400 3.130 5.9595 0.012
1.390 1.395 3.136 5.9395 0.008
1.396 1.396 3.148 5.9475 0.004
1.394 1.400 3.146 5.9585 0.005

1.401 1.395 3.136 5.961 0.009

Table 1: Measurements of manufactured Lincoln
Block R© using digital calipers. All values are in
inches

The mean and standard deviation give us an
estimated adhesive thickness of 0.009 ± 0.005 in.
As 1/64 = 0.015625 we maintain it as an over es-
timate of the gap and adhesive thickness. Stiffer
adhesives with minimal thickness should be used
to discourage member rotation.
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2.3.4 Polyurethane Foam

Lincoln Block R© is designed with sufficient strength
to accommodate the usage of DAP Touch’n Seal,
a fire retardant spray polyurethane foam (SPF),
sealed inside its cavity. Besides serving as insula-
tion, this foam adheres to the sides and members
increasing the internal cohesion of the block sys-
tem, allegedly acting as a fail safe to prevent the
disunion of the sides from each other and the mem-
bers.

In this analysis the foam applies no net force
on the member by symmetry. This assumption is
violated if adjacent courses are displaced different
distances, or if members are irregularly spaced.
However, the forces by the foam are several times
smaller than the forces by the nails so we maintain
this assumption for simplicity.

Figure 4: Forces considered for each rectangular
block of foam adjacent to a given member.

The data on shear and compressive modulii of
DAP are proprietary, however ultimate strengths
and elongations at break are provided[5]. Note
elongation for compressive failure was not given,
and is hence assumed identical to tensile elonga-
tion at break.

Ultimate Elongation Secant
Strength @ Break Modulus

Compressive 11 psi 10% 110 psi
Tensile 33 psi 10% 330 psi
Shear 18 psi 57% 31.5 psi

Table 2: Details of modulii estimates for DAP
SPF.

Members penetrate 2.875 in into neighboring
courses allowing for nailing. Assuming the mem-
ber in question (1.5 in wide) is halfway between
the two adjacent members, there is a 10.5 in long
block of foam on either side of the top and bottom
of a mid-wall member. As the force on the mem-
ber by the tension and compression act in the same
direction by similar length blocks, we treat them
as a single block with elastic modulus 440 psi. As
the patch width varies from 3.125 in wide down to
1.5 in in the top 5/8 in of each member we inte-
grate to find the torque about an axis h due to the

top and bottom foam as

τf1 =− 440∆x

6.5

(∫ 7

4.75
3.125(z − h)dz

+

∫ 7.875

7
(3.125− 2.6(z − 7))(z − h)dz

)
τf2 =− 440∆x

6.5

(∫ 2.25

0
3.125(z − h)dz

+

∫ 2.875

2.25
(3.125− 2.6(z − 2.25))(z − h)dz

)
.

Restoring shears are calculated in less detail
ignoring the tapered geometry of the members.
Given Gf = 31.5 psi we find the shear torques
starting from the bottom at heights 0 in, 2.875 in,
4.75 in, and 7.875 in corresponding to the bound-
ary of the three regions described in figure 4. The
shear torques acting at each surface relative to an
axis h is given by,

τ0 = −Gf · 3.125(10.5)(h− 0)∆θ

τ2.875 = −Gf · 3.125(11.25)(h− 2.875)∆θ

τ4.75 = −Gf · 3.125(11.25)(h− 4.75)∆θ

τ7.875 = −Gf · 3.125(10.5)(h− 7.875)∆θ.

where 10.5 in and 11.25 in correspond to the local
lengths of foam considered to act on this member
(given that neighboring members share the shear
force).

In this model, the foam only influences the axis
of rotation of the members. We conservatively ne-
glect the force needed to deform the foam itself
in the analysis of course-to-course connections for
simplicity in this model.

2.4 Equilibrium Conditions

In our quasi-static analysis we consider adjacent
courses of Lincoln Block R© held at maximum ex-
tension. We solve for ∆θ(∆x, h) by enforcing zero
net-force on the members, then for h by enforc-
ing no net-torque, and finally the maximum ∆x is
determined by enforcing that no nail joint experi-
ences forces in excess of 70.78 lbf . This gives

∆θ(∆x, h) =
0.3179∆x

h− 3.448
(2)

in radians, with a vertical asymptote at h =
3.448 in. As we have used the small angle approxi-
mation throughout, this formula is a valid approx-
imation when |∆θ| . 0.09 radians, or about 5o.
Axes near 3.448 in require angles in excess of this
limit. However such states require external torques
to maintain and hence they do not occur.
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Figure 5: Torque due to each component and net
torque as a function of rotation axis.

We find an axis of h = 1.776 in is the only
solution corresponding to no net force and no net
torque on the members. Increasing ∆x, the first
nail yields when ∆x = 0.00516 in as represented
in figure 6.

-0.010 -0.005 0.005 0.010
Drift HinL

-100

-50
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Force HlbL

Adhesive

Nail 3

Nail 2

Nail 1

Figure 6: Force displacement functions for the
given axis with the horizontal lines at ±70.78 lbf
representing the threshold force for mode IV bend-
ing.

Evaluating each function at for ∆x =
0.00516 in gives us the following force distribu-
tion:
Component Disp. (in) Force (lb) Var.

Nail 1 −0.00076 +27.8 Fn1

Nail 2 +0.00194 −70.8 Fn2

Nail 3 −0.00126 +46.1 Fn3

Adhesive +0.00233 −3.13 FA

Sealant ∓0.00516 ±49.7 FS

Table 3: Displacement and force of each compo-
nent at maximum extension with a DAP foam
filled cavity.

The sealant force here is that of a single 24 in
bead, corresponding to the ±12 in neighborhood
of a single member.

1 2 3 4 5 6 7
Axis HinL

-200

-100

100

200
Force � First Yeild Hlbf L

Nail 3

Nail 2

Nail 1

Adhesive

Figure 7: Forces by nails and adhesive as function
of axis given ∆x = 0.00516 in. The vertical line
corresponds to the axis h = 1.776 in.

Considering now the forces on two adjacent
courses we produce an estimate of the shear
strength of 24 in of un-aided Lincoln Block R© as
2(Fn1+Fn2+FA+FS) or equivalently 2(Fn3+FS)
each of which give 191.5 lbf .

Figure 8: Forces on the sides due to nails in
member (purple/blue/green), adhesive (red), and
sealant (orange).

We would be remiss to neglect the case in
which no spray foam is used. Using the same
arithmetic we neglect the torques and forces de-
scribed in section 2.3.4 and solve again for the
axis corresponding to equilibrium. This yields
h = 1.811 in, a virtually identical max extension
of ∆x = 0.00515 in, and a maximum shear trans-
fer of 187.3 lbf , only about 4 lbf less than a similar
2-foot wall filled with SPF. This may be partially
caused by our underestimates of the spray foam’s
rigidity in section 2.3.4. The resulting force distri-
bution is included below in table 4.
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Component Disp. (in) Force (lb) Var.

Nail 1 −0.00081 +29.6 Fn1

Nail 2 +0.00194 −70.8 Fn2

Nail 3 −0.00121 +44.2 Fn3

Adhesive +0.00237 −3.00 FA

Sealant ∓0.00515 ±49.5 FS

Table 4: Displacement and force of each compo-
nent at maximum extension given an empty cavity
wall.

From here on we follow Lincoln Block R© rec-
ommendations and consider only walls filled with
DAP SPF. Dividing the 191.5 lbf value from be-
fore by the conversion factor 24/12 we find that
un-reinforced block should transfer 95.75 lbf per
lineal foot of block at a course drift of a mere
0.00516 in. This yields a linear force law for use
elsewhere in this model. Alternatively we can en-
capsulate this relation as the shear modulus of a
“virtual block” (e.g. the dashed parallelogram in
figure 8) between adjacent course centers as,

Gblock =
191.5 lbf/(24.0 · 5.96 in2)

0.00516 in/4.75 in
= 1230 psi.

3 The System

We emphasize at this point Lincoln Block R© is
a system. The above calculations only apply
to block that has not been reinforced by spline
pieces. Never would such a wall be built. At
minimum, each corner would have a glue lami-
nated 3.125 in2 beam nailed to each block face
by pairs of 16d, 0.135 in × 3.5 in nails. Fur-
ther, 3.125 in × 1.5 in spline pieces secured with
0.090 in×2.5 in ring-shank nails are added to sup-
port various point-loads, and to stiffen the wall
around window frames and doors[10].

In order to combine these elements we cal-
culate the work required to bend/shear the
splines/corners pieces, to deform their nails, and
to translate each attached course. We accomplish
this by assuming an appropriate deflection profile
based on the loading mode. Using the slope of
the profile’s tangent at each interface we determine
the relative course drift for each pair of adjacent
courses.

3.1 Splines and Corners

We begin by determining the energy required to
bend the framing elements of a Lincoln Block R©

wall. As the first course is tied to the foundation
and floor directly with HTT4 ties anchoring each
corner to the sill plate, we enforce boundary condi-
tions such that both splines and corners meet the
sill plate perpendicularly. This allows us to model

point loading (1) or uniform loading (2) of these
beams and find the associated deflection profiles
ω(z). These profiles are assumed to govern the
shape of a deformed wall. Point loading refers to
a concentrated force F applied at the top of the
wall and the associated reaction −F at the foun-
dation. This is a static load designed to mimic
seismic loading. The uniform loading however is
analogous to a wind load, applied to an adjacent
wall and transferred via normal forces to the shear
wall in question via the corner assembly.

Let n be the number of courses and c be the
course height. Given the yield conditions devel-
oped in section 2, we determine the profile by fix-
ing ω′(H) = ∆x/c where n · c = H is the height
of the beam and where the slope is greatest. This
guarantees ∆x is the maximum drift per course.
It follows,

ω1(z) =
1

3

∆x

c

z2

H2
(3H − z)

ω2(z) =
1

4

∆x

c

z2

H3

(
6H2 − 4Hz + z2

)

where,

F =
2EI

H2

∆x

c
and q =

8EI

H3

∆x

c

are minimum force and linear pressure required to
ensure the maximum slope above for single splines.
These correspond to a max deflections of

ω1(H) =
2

3
n∆x and ω2(H) =

3

4
n∆x.

An example of course drift profiles for a 21 course
wall given the maximum ∆x from section 2.4 is
presented in figure 9.

0 2 4 6 8
z HftL

0.02
0.04
0.06
0.08
0.10

Ω HinL

Figure 9: Bending profiles for an 8.3 ft beam with
fixed max slope given point (blue) and uniform
loading (burgundy).

6



5 10 15 20
Course

0.001

0.002

0.003

0.004

0.005

Course Drift HinL

Figure 10: Plot of the relative course drift, cω′(c·i)
for each loading (colored as in figure 9). Course
drift is most pronounced high on the wall and ap-
proaches 0.00516 in in this example.

3.1.1 Bending

With these profiles in hand we calculate both the
bending and shear energy in the beams. Let b
and m be the dimensions of the beam cross sec-
tion, where m is the width in the direction of the
bending. The area moment of inertia of the cross
section through its centroid is simply

I =

∫ b/2

−b/2

∫ m/2

−m/2
x2dxdy =

bm3

12
.

The corners pieces are a two-piece glulam beam,
however as the neutral axis corresponds to the glue
layer we use the above area moment of inertia nev-
ertheless. Given the moment M(z) = −EI d2ω

dz2
the

bending energy is calculated via,

Ubend =

∫ H

0

M2(z)

2EI
dz.

Given point (1) and uniform loading (2) we have,

U1,bend =
1

18

(
∆x

c

)2 E

H
(bm3)

U2,bend =
3

40

(
∆x

c

)2 E

H
(bm3).

For splines m = 1.5 in and for corners m = b =
3.125 in. Given the elastic modulus of Douglas fir
we have,

UiJ,bend(∆x, n) = BiJ

(
∆x2

n

)
where the coefficients BiJ

BiJ i = 1 i = 2

S 1.0661× 104 1.4393× 104

C 9.6401× 104 1.30140× 105

allow the calculation of the energy required to
bend each corner (C) and spline piece (S).

3.1.2 Shear

While bending energy dwarfs shear energy in thin
beams, we calculate it nevertheless for complete-
ness. For the point loading, the shear is con-
stant while for uniform loading the shear force at
a height z is due to the remaining uniform load
above z, as the load below counteracts the reaction
at the first course. This gives a shear function of

V (z) = q(H − z)

in the second case. The corresponding energy is
given by,

Ushear = fs

∫ H

0

V 2(z)

2GA
dz

where the rectangular beam shape factor is fs =
6/5. This yields,

U1,shear =
12

5

(
∆x

c

)2 E2bm5

GH3

U2,shear =
1

20

(
∆x

c

)2 E2bm5

GH3

which again differ only by a constant factor. After
substituting A = bm, H = nc, and q from above,

UiJ,shear(∆x, n) = SiJ

(
∆x2

n3

)
where the coefficient SiJ is given by the following
table.

SiJ i = 1 i = 2

S 6.5612× 106 1.3669× 105

C 2.5750× 108 5.3646× 106

This term dominates for short beams but di-
minishes for longer beams given the factor of n3

corresponding to the wall height.

3.1.3 Additional Nails

Corner pieces and splines are typically secured
with nails 1 in from course edges. Repeating the
same calculations assuming flush nailing without
gaps for these additional nail types we find the
preferred yield mode and force.

Mode Ring-shank (lbf) 16d (lbf)

Im 403 1369
Is 492 886
II 187 485
IIIm 149 397
IIIs 177 356
IV 112 337
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Again following the Eurocode 5 empirical rela-
tion (equation 1) for these Douglas fir timber-to-
timber nail joints we calculate

k16d = 637.2 N/mm = 43662 lbf/in and

krs = 881.4 N/mm = 60392 lbf/in

to be the prescribed slip modulii for these nails.
We now consider the work that must be done

in elastic deformation these nails. Using the slope
of the profile ω′(z) we capture how the bending of
each nail varies based on the angle of the beam
at that course. Assuming that the courses track
the beam and that the axis locally is equidistant
from each nail, we underestimate the work needed
to deform the pair of nails. This also implicitly al-
lows courses to drift without applying a net force
on the splines or corner pieces. Hence the approx-
imate shear displacement for any nail is

∆ = (c/2− 1) · ω′(c(i− 1/2)) : 1 ≤ i ≤ n

where c = 4.75 in is the course height.
Hence the work required to bend a pair of the

16d nails is

U16d,i = 2 · 1

2
k16d∆2

while to bend four 0.090 in ring-shank nails the
work required is

Urs,i = 4 · 1

2
krs∆

2.

Thus, given the appropriate profiles, the energies
required to bend all of the nails securing the cor-
ners and splines are

U1C,nails =

n∑
i=1

U16d,i

=
21.0856

(
7 + 128n4

)
n3

≈ 2699.0(∆x2n) and

U1S,nails =

n∑
i=1

Urs,i

=
30.4889

(
7 + 128n4

)
n3

≈ 3902.6(∆x2n)

for point loading, and

U2C,nails =
3.765∆x2

n5

(
864n6 + 196n2 − 31

)
≈ 3253.2(∆x2n) and

U2S,nails =
5.444∆x2

n5

(
864n6 + 196n2 − 31

)
≈ 4704.0(∆x2n)

for uniform loading. We use the exact expressions
in our analysis with these approximations provided
only for comparison.

3.2 Block

Pulling from our earlier work, we deduced that
foamed courses of block have a shear modulus of
Gblock = 1509 psi. Given a course drift of ∆xi the
work to shear a adjacent courses of block is

UB,i =
1

2

GA∆x2
i

c
,

where ∆xi ≈ cω′(c · i) from the slope of the profile.
Hence, for one foot of block, n courses high,

UB =
1

2
GAc

n−1∑
i=1

ω′(c · i)2

Given A = 12 · 5.96 in2, and the corresponding ω′

this yields,

U1B =
309(n− 1)

(
16n3 + n2 + n+ 1

)
∆x2

n3

≈ 4947(n− 1)∆x2

U2B =
221(n− 1)(27n5 + 6(n4 + n3 + n2)− n− 1)∆x2

n5

≈ 5963(n− 1)∆x2

3.3 External Work

In the following section we proceed to calculate ∆x
(the max per course drift) given a fixed point or
uniform load. These same calculations will also al-
low us to determine what external loading causes
threshold course drift. In order to do either we
must first find the external work done on a wall,
length L feet, and n courses high (4.75 in per
course).

For point loading, the expression

U1,ext =
Fn∆x

3

is sufficient assuming a linear response by the wall.
For uniform loading, given the profile ω2(z) the ex-
ternal work done in deforming the wall section is,

U2,ext =

∫ H

0

1

2
Qω2(z)dz =

3

20

(
∆x

c

)
QH2

=
3Qn2c∆x

20
.
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3.4 Results and Analysis

Let δ be the density of splines (in splines per foot)
and suppose there are two corner pieces. Assuming
that all work done on the wall is transformed into
the potential energy of its components we solve

Uext = 2(UC,bend + UC,shear + UC,nails)

+bLδc(US,bend + US,shear + US,nails)

+L · UB (3)

for ∆x and alternatively for F or Q as a functions
of n, δ, L, and the remaining variable. Recall the
floor function b·c returns the largest integer less
than or equal to the argument.

3.4.1 Point Loading (Seismic)

First we consider the maximum course drift ∆x
given a fixed load. Referring to the Nickerson En-
gineering preliminary calculations, a seismic base
shear of 1895 lbf corresponds to an R = 6.5 earth-
quake given site conditions in Seismic Design Cate-
gory D[7]. This gives a fixed seismic load of 948 lbf
for each wall shear wall. We will use this fixed load
multiple times, however the seismic base shear is a
function of the building’s mass, and this quantity
in was computed specifically for the 33 ft× 25 ft
cabin. In light of this we also provide maximum
projected (per wall) seismic base shear loads in fig-
ures 13, 14, and 15.

To proceed we fix F we solve for ∆x(n,L, δ) as
a function of the number of courses, wall length,
and spline density. Spline spacing is irregular in
practice and partial and mid-wall splines are of-
ten employed. Hence the density parameter δ is
a proxy for the amount of reinforcing splines in-
serted into the wall. To establish lower bounds,
one can set δ equal to zero.

For the sake of this analysis however we will
routinely assume full height splines are conserva-
tively placed every 12 feet. This allows us to plot
the response of shear walls ranging from 5 to 25
feet long.

10 20 30 40
n HcoursesL

0.002

0.004

0.006

0.008

0.010

Dx HinL

25 ft

20 ft

15 ft

10 ft

5 ft

Span Length

Figure 11: Max expected course drift under a fixed

948 lbf lateral point load for various length and
height unperforated walls, reinforced with splines
every 12 ft.

This model assumes long boards or tightly laid
courses in which the normal force acts between
blocks. However, gaps between blocks on the same
course and spline deflection at the sill plate are
neglected factors that could lead give rise to addi-
tional course drift. In practice these neglected gaps
are about 0.02 in wide and reinforced with a short
spline piece secured with 8−0.072 in× 2.0 in brad
nails. For example, if on average 5 foot blocks are
used along a 25 foot wall, these gaps total 0.08 in
across the span.

This model confirms what contractors know
from experience: additional splines surely must be
added shorter walls to ensure rigidity. In figure
12, this is effect is illustrated for a short wall given
various spline spacings, where the horizontal line
corresponds to the course drift of first yielding.

10 20 30 40
n HcoursesL

0.001

0.002

0.003

0.004

0.005

0.006
Dx HinL

10 ft wall

6 ft

4 ft

3 ft

Spacing

Figure 12: Max expected course drift for reinforced
unperforated 10 ft long walls.

As with other building systems we see that
short length walls of block cannot serve as shear
walls, and require excess reinforcement to prevent
over extension. One achieves these results via
splines, reducing the required wall height, or by
the inclusion of other longer parallel shear walls in
the design.

While this analysis is useful we look to deter-
mine the threshold forces required to over-extend
a Lincoln Block R© wall of any length and height
allowable with continuous splines (i.e. less than
24 ft high). Given U1,ext = Fn∆x

3 we solve for F
via equation (3) in section 3.4. Fixing L = 25 ft
we produce the following chart as a function of the
number of courses and spline spacing. For conti-
nuity we round down the floor function replacing
bLδc with (Lδ − 1). Below in figures we scale this
force by the wall length to give pounds-force per
lineal foot shear wall.

9



80

85

90

95

100

105
110
115

120

10 15 20 25 30 35 40

2

4

6

8

10

12

14

n HcoursesL

1�
∆

Hft
�sp

lin
eL

Max Point Load Hplf L for L = 25 ft

Figure 13: Max point loading for a 25 ft long wall.

Conversely, for a fixed spline density (e.g. 12 ft
per spline) we produce a similar chart for height
and length. The color scheme is inconsistent so
please refer to the contour labels.
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Figure 14: Max point loading for walls reinforced
with splines every 12 ft.

Alternatively we represent the above result for
δ = 1/12 ft−1 in figure 15 for specific wall lengths.
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n HcoursesL
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Figure 15: Alternative representation of max point
loading for walls reinforced with splines every
12 ft.

We notice that these functions have horizontal
asymptotes but physically these do not correspond
to arbitrary height Lincoln Block R© walls. However
they do serve as underestimates of the maximum
point loading allowed for these walls, and are listed
below. Due note, this model is focused on the de-
termination force response of the splines and block
alone. Thus, these values must be compared with
the maximum loads of the other components in the
continuous load path from roof to foundation for
the specific project.

Length (ft) Max Load (lb) Max Load (lb)
δ = 1/12 δ = 0

15 1248 1172
25 2065 1939
33 2718 2552
35 2881 2705
45 3698 3471

Table 5: Max lateral point loading for various 21
course (8.3 ft) high walls reinforced and not.

To complete this section we consider a fixed
height wall taken to be 21 courses high. This
yields the following chart, useful for choosing an
appropriate spline density for a given length of
wall.
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Figure 16: Max point loading for a 8.3 ft high (21
course) walls.

3.4.2 Uniform Loading (Wind)

Next we consider the maximum course drift ∆x
given a fixed wind pressure. Again mirroring the
Nickerson Engineering preliminary calculations,
we follow the assumption of a fixed pressure of
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10 psf . This pressure is slightly in excess of the
predicted pressure given site exposure to 110 mph
gusts[7]. Applied to a 33 ft long adjoining wall and
split between identical shear walls, this wind pres-
sure induces a linear pressure of Q = 165 lbf/ft =
13.75 lbf/in on each shear wall. Given this wind
loading we again assume 12 ft spline spacing to
plot the maximum course drift as a function of
number of courses for various wall lengths.

0 10 20 30 40 50 60
n HcoursesL0.000

0.001

0.002
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0.005

Dx HinL

45 ft
35 ft
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15 ft
5 ft

Figure 17: Max expected course drift for various
unperforated and reinforced δ = (12 ft)−1 shear
walls resisting a design wind load of 10 psf acting
upon a 33 ft adjacent windward wall.

In the above figure 18, we see that this wind
load results in threshold course drift for for 5 ft
wide 18 course, and 15 ft wide 52 course walls.
Also observe that a 21 course (8.3 ft) high wall,
25 ft long, reinforced as described, experiences a
maximum course drift of 0.0013 in exposed to this
wind load. This corresponds to about 20% of the
maximum drift allowed.

Conversely, we determine the maximum force
per unit height given ∆x = 0.00516 in. Solving we
find,

Q =
20

3(n · c)2

c

∆x
[2(UC,bend + UC,shear + UC,nails)

+bLδc(US,bend + US,shear + US,nails)

+L·UB].

Evaluating this function for the same parameters
above we find, Q = 65.8 lbf/in = 790 lbf/ft.

As the construction of any Lincoln Block R©

structure involves walls of different heights,
lengths, and spline densities we again fix L =
25 ft, δ = 1/12, or n = 21 to produce the fol-
lowing charts to aid designers. The floor function
bLδc remains replaced by (Lδ − 1) and we multi-
ply by the ratio of wall height over length to once
again present values in pounds-force per lineal foot
of shear wall.
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Figure 18: Max uniform load per foot of wall
height for a 25 ft course wall.
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Figure 19: Max uniform load per foot of wall
height reinforced with splines every 12 ft.
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Figure 20: Max uniform load per foot of wall
height for an 8.3 ft (21 course) high wall.
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3.5 The 25× 33 Cabin

The keen reader or design professional will note
that the above subsection applies to unperforated
walls. However, the design of the 25 × 33 cabin
has two doors and eight windows. Two of these
windows (on the rear wall, denoted “grid 1” in
the Nickerson calculations) are supported mid-wall
with partial splines i.e. splines that do not reach
the sill plate. Conservatively we neglect these
splines contribution to the wall’s shear response.
Below we reproduce part of the shear wall lengths
table from the Nickerson report including the num-
ber of full-height splines and corner pieces along
each wall. Note, we follow the previous report in
neglecting shear walls shorter than 4 ft, however
the application of this convention is largely arbi-
trary, and may cause us to underestimate δ. Also,
the corner pieces appear to be double counted,
however the corners stiffen both adjacent walls and
in section 3.1.3 we were sure to only count the nails
laterally resisting the shear loading.

Wall Block-ft Corners Splines δ−1

1 20.35 2 2 10.16
2 14.75 2 8 1.84

A 14.983 2 4 3.75
B 21.92 2 2 10.96

Wall Seismic Shear (plf) Wind Shear (plf)

1 100 217
2 185 291

A 154 246
B 93 216

Table 6: Summary of shear resisting elements and
maximum shear values for the 33 ft (walls 1,2) by
25 ft (A,B) cabin. All walls are 21 courses high
and values have not been ASD adjusted.

4 Discussion

This report was dedicated to the investigation of
the shear forces in the Lincoln Block R© system.
While an effort was made to be detailed, this is
a linear analysis which required approximations
and idealizations. For example, we underestimated
the foam and sealant stiffness based on data avail-
ability. We also assumed the beams meet the sill
plate orthogonally, and ignored the gaps between
blocks of the same course. Future reports will re-
visit these assumptions in greater detail. However,
the appropriate use of design factors should be suf-
ficient for single story construction.

While no specific NDS codes exist limiting
shear wall deflection, sufficient stiffness is required

to prevent the cracking of wall treatments applied
to the structure. Chapter 5 in the American Wood
Council Residential Structural Design[2] guide rec-
ommends shear walls should deflect less than l/180
under wind and seismic loading where l is the span
length in inches. Assuming no reinforcing splines
(δ = 0) we take the ratio of our calculated wall de-
flections over the prescribed maximum deflection
limits to produce the below figure.
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Figure 21: Deflection limit fractions relative to
AWC guidelines for various un-reinforced walls.

We see that the fixed wind load from section
3.4.2 on a 40+ course, 5 ft wall is in excess of
the AWC recommendations. However, for a 25 ft
long, 8 ft high wall we find Lincoln Block R© expe-
riences extremely minimal deflection as described
in table 6.

n (courses) Point Defl. (in) Limit Frac.

21 0.035 0.021
42 0.070 0.042
63 0.104 0.063

n (courses) Uniform Defl. (in) Limit Frac.

21 0.022 0.013
42 0.085 0.051
63 0.190 0.114

Table 7: Summary of 25 ft long wall deflections
and fraction of deflection limit.

While these results are promising this model
ultimately needs to be verified by experiments
performed in certified facilities. While testing of
fully assembled sample wall sections would be il-
luminating, incremental tests would inform the
parameters of this model. Minimally, one should
verify the force-displacement relationship for block
course-to-course connections. More detailed quan-
titative design of such experiments however are to
be released as a companion to empirical results in
a later report.
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Short of finite element analysis implemented
in a computer aided design program, to better de-
scribe Lincoln Block R© structures’ behavior we pro-
pose two future studies. One into the response
of walls under forces perpendicular to its face
(a study in which the tolerances of the blocks’
dimensions and gaps along courses will be non-
negligible), and another that would build on the
former two, describing the floor and roof coupling
to the walls for single story and taller structures.
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